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Abstract

This is the second paper of our work on structural reliability analysis for implicit performance function. The first
paper proposed structural reliability analysis methods using multilayer perceptron artificial neural network [Deng,
J., Gu, D.S,, Li, X.B., Yue, Z.Q., 2005. Structural reliability analysis for implicit performance function using artificial
neural network. Structural Safety 25 (1), 25-48]. This paper presents three radial basis function network (RBF) based
reliability analysis methods, i.e. RBF based MCS, RBF based FORM, and RBF based SORM. In these methods, radial
basis function network technique is adopted to model and approximate the implicit performance functions or partial
derivatives. The RBF technique uses a small set of the actual data of the implicit performance functions, which are
obtained via physical experiments or normal numerical analysis such as finite element methods for the complicated
structural system, and are used to develop a trained RBF generalization algorithm. Then a large number of the function
values and partial derivatives of implicit performance functions can be readily obtained by simply extracting informa-
tion from the established and successfully trained RBF network. These function values and derivatives are used in con-
ventional MCS, FORM or SORM to constitute RBF based reliability analysis algorithms. Examples are presented in
the paper to illustrate how the proposed RBF based methods are used in structural reliability analysis. The results are
well compared with those obtained by the conventional reliability methods such as the Monte-Carlo simulation, mul-
tilayer perceptrons networks, the response surface method, the FORM method 2, and so on. The examples showed the
proposed approach is applicable to structural reliability analysis involving implicit performance functions.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Radial basis function network; Implicit performance function; Reliability analysis; Monte-Carlo simulation; First-order
reliability method; Second-order reliability method

* Tel.: +86 731 8836735; fax: +86 731 8879612,
E-mail address: jiandeng@csu.edu.cn

0020-7683/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.05.055


mailto:jiandeng@csu.edu.cn

3256 J. Deng | International Journal of Solids and Structures 43 (2006) 3255-3291
1. Introduction

Structural reliability analysis deals with the statistical nature of many basic variables in structural safety
analysis and design. Freudenthal (1947) was among the first in the world to develop structural reliability
that is the application of probabilistic methods to evaluate the safety of structures that are made of various
materials. His work on the classical theory of structural reliability was summarized in a comprehensive
manner by Freudenthal et al. (1966). In recent years, reliability analysis has been applied to structural de-
sign and safety reassessment of the existing structures (Ang and Tang, 1975, 1984; Ditlevsen and Madsen,
1996; Grigoriu, 2000; Harr, 1987, Madsen et al., 1986; Melchers, 1999; Nowak and Collins, 2000; Rahman
and Rao, 2001). The Monte-Carlo simulation (MCS), the first-order reliability (FORM) and the second-
order reliability methods (SORM) are the three methods that have been widely used to estimate the failure
probability of structural systems. The MCS requires the calculations of hundreds and thousands of perfor-
mance function values. The FORM and SORM generally demand the values and partial derivatives of the
performance function with respect to the design random variables. Such calculations can be performed effi-
ciently when the performance function g(X) can be expressed as an explicit form or simple analytical form
in terms of the basic variables X. When the performance functions are implicit, however, such calculations
require additional effort and will be time-consuming. Such implicit performance functions will normally
occur when costly physical experiments or computationally intensive numerical analyses such as 3-D finite
element methods have to be adopted for the mechanical analysis of a structural system.

A few approaches have been developed to cope with the issues with implicit performance functions. One
of the popular approaches is the response surface method (Bucher and Bourgund, 1990; Faravelli, 1989;
Guan and Melchers, 1997; Rajashekhar and Ellingwood, 1993; Wong, 1985). A polynomial function is used
to approximate the unknown implicit performance function. A fairly accurate estimate of the failure prob-
ability could be obtained if the selected polynomial function fits the actual limit state well. However, re-
sponse surface method becomes computationally impractical for problems involving a large number of
nonlinear random variables, particularly when mixed or statistically dependent random variables are in-
volved. Besides, there is no guarantee that the fitted surface is in fact a sufficiently close fit in all regions
of interest and it is difficult to construct the appropriate response surface without knowing the location
of the design point (Der Kiureghian, 1996). Other modified approaches are the multi-plane surfaces method
and the multi-tangent-plane surface method (Guan and Melchers, 1997), and the improved sequential re-
sponse surface method (Kim and Na, 1997). These approaches can improve the accuracy of solutions ob-
tained from the FOSM method and take less computational time than the MCS method. Yet, they are only
suitable for the cases of a nonlinear concave or convex limit state surface. Bauer and Pula (2000) have also
pointed out that the response surface method can sometimes lead to false design points.

The conventional MCS can also be used for the implicit performance function. However, this method
was notorious for its unendurable computational cost. Some variance reduction techniques such as the
importance sampling, the Latin hypercube sampling, the radial importance sampling (Melchers, 1990),
and the directional importance sampling (Ditlevsen and Madsen, 1996), have been proposed to reduce
the number of samples in the conventional MCS. These techniques can shorten the computational time
to a certain extent. Point-estimate methods (Rosenblueth, 1975, 1981; Harr, 1987; Christian and Baecher,
2002) can facilitate reliability analyses even when performance functional relations are given as graphs or
tables, rather than as mathematical functions. However, Rosenblueth’s method should be based on an
assumption that uncertainty can be adequately described using lower moments and correlation coefficients.

The combination of sensitivity analysis and FORM (or SORM) for implicit performance functions was
discussed in detail by Haldar and Mahadevan (2000). Three methods of sensitivity analysis were presented:
the finite difference, the classic perturbation, and the iterative perturbation. In the finite difference ap-
proach, it is necessary to repeat the deterministic analysis and the results would be accurate only when
the input variables have small variability, and frequently some troubles arise when this method is used
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(Gomes and Awruch, 2004). The classic perturbation approach can be used for problems involving mod-
ification of finite element codes. The iterative perturbation approach is suitable in the context of nonlinear
structural analysis, in which an iterative process is required for mechanical response solutions. Adopting
this approach involves considerable programming work and complicate computation.

During the last two decades, artificial neural network (ANN) algorithms have been rapidly developed for
universal function approximator (Anjum et al., 1997; Cardaliaguet and Euvrand, 1992; Chapman and
Crossland, 1995; Gomes and Awruch, 2004; Hornik et al., 1989, 1990; Schueremans, 2005; Schueremans
and Van Gemert, 2005). ANN is a computational mechanism that is able to “acquire, represent, and com-
pute a mapping from multivariate space of information to another, given a set of data representing that
mapping”’ (Garrett, 1994). ANN is capable of learning from training examples and finding meaningful solu-
tions without the need to specify the relationship among variables. It can capture nonlinear and complex
interactions among variables in a system (Goh and Kulhawy, 2003; Masters, 1993). A multilayer percep-
trons (MLP) network was developed as an approximate limit state function (Schueremans and Van Gem-
ert, 2005; Schueremans, 2005; Shao and Murotso, 1997; Sasaki, 2001). Goh and Kulhawy (2003) used MLP
approach to model the limit state surface for reliability analysis. Deng et al. (2005) described why and how
to employ MLP technique to approximate the implicit performance functions and derivatives in FORM,
SORM and MCS reliability analysis. Artificial neural networks in those works were almost multilayer
perceptrons.

Another neural network—radial basis function network (RBF) is increasingly attracting attention
recently (Chen and Chen, 1995; Haykin, 1999; Li, 1996; Mai-Duy and Tran-Cong, 2003; McDonald
et al., 2000; Park and Sandberg, 1993; Warnes et al., 1998). The reason is that training of a RBF network
can be essentially faster than the methods used to train MLP networks (Moody and Darken, 1989). Further-
more, the multilayer perceptron network trained with backpropagation does not yield the approximating
capabilities of RBF networks. Therefore the theory of RBF neural networks is still the subject of extensive
ongoing researches (Orr, 1999). Franke (1982) found radial basis functions to be superior to thin plate
splines, cubic splines and B-splines, and several others. Li (1996) proved the fact that any multivariate func-
tion and all its existing derivatives can be simultaneously approximated by a radial basis function network,
where the assumptions on the functions are relatively mild. Hussain et al. (2002) applied radial basis function
and polynomial metamodels (i.e. response surface metamodel) to approximate the input-output functions
and compared their effectiveness qualitatively and quantitatively and made conclusions that radial function
metamodels provided a better fit than the polynomial metamodels. Mai-Duy and Tran-Cong (2003) pre-
sented a numerical approach, based on radial basis function networks, for the approximation of a function
and its derivatives (scattered data interpolation). One remarkable feature of RBF networks is described as
follows (Bishop, 1995):“RBF networks possess the property of best approximation. An approximation
scheme has this property if, in the set of approximating functions (i.e. the set of functions corresponding
to all possible choices of the adjustable parameters) there is one function which has minimum approximating
error for any given function to be approximated. This property is not shared by MLP’s.”

Although RBF network founds some applications in deterministic engineering problems (Meckesheimer,
2001), reports on its application to a structural reliability problem are not found until recently. RBF network
was used in probabilistic mechanics as only a substitution of finite element solver (Hurtado, 2002). Gomes
and Awruch (2004) compared response surface method and ANN (MLP and RBF) with other alternatives to
evaluate structural reliability, in which ANN was used to approximate the performance functions. In this
paper, our previous researches in Deng et al. (2003, 2005) are extended to radial basis function network.
RBF networks were constructed to approximate the implicit performance function (or limit state function)
and the first and second order derivatives with the least efforts and without any loss of the accuracy.

The main objective of this paper is to propose three RBF network methods to compute the performance
function derivatives, and then to combine them with conventional MCS, FORM and SORM and propose
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three RBF reliability analysis methods: RBF based MCS, RBF based FORM and RBF based SORM. We
illustrate how this RBF based approach can be used in combination with conventional reliability methods
such as FORM, SORM and MCS in the facilitation of the computation of values of implicit performance
function and its derivatives for reduction of the computation efforts. To investigate the suitability of these
approaches, the results of the new approaches are compared with those obtained by conventional reliability
methods such as the direct Monte-Carlo simulation, multilayer perceptrons, the response surface method
and the FORM method 2, and so on. In Section 2, RBF network is briefly reviewed and partial derivatives
of the performance function are computed using three methods of RBF: RBF network method 1, RBF net-
work method 2, and RBF network method 3. In Section 3, three RBF based reliability analysis methods are
proposed, i.e. RBF based MCS, RBF based FORM, and RBF based SORM. These methods are illustrated
with the aid of four examples in Section 4. Section 5 concludes the paper.

2. Computation derivatives using RBF networks

We are concerned with the reliability analysis of multi-parameter scientific problem or engineering struc-
tures. The performance function g(X), X € R", is assumed to be implicit and evaluated experimentally or
through a computationally intensive numerical simulation. It is assumed that the results of experiments
or numerical simulations have yielded a set of s data points giving performance function evaluations
yi=g(Xy), i=1,...,s, where X;=[xy;.. .,xm-]T and [-]T denotes transpose operation, n is the number of
dimensions, s is the number of input sample pairs. The s data samples pairs (X;, y;) (i=1,...,s) are used
as the training samples of RBF networks.

2.1. RBF network

The RBF network has a feed-forward structure consisting of a single hidden layer of locally tuned units
which are fully interconnected to an output layer of linear units as shown in Fig. 1.

All hidden units simultaneously receive the n-dimensional real-valued input vector x. Each hidden unit
output ¢4x) (i=1,...,m) is obtained by calculating the “closeness’ of the input x to an n-dimensional

y= 30009

Fig. 1. A radial basis function neural network consisting of a single hidden layer of locally tuned units which are fully interconnected
to an output layer of linear units.
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parameter vector, where i is associated with the ith hidden unit, m is the number of radial basis functions,
i.e. the number of hidden units, and m < s, s is the number of input pairs. Here, the response characteristics
of the ith hidden unit are given by

¢(i) (r) = ¢<i>(|x — D

) i=1,...,m (2.1)

where ¢)(r) is called radial basis function; r=|x —c?| denotes the Euclidean distance, and

r=y/(x—ci)(x—c) = Dl — cj(.i)]z; ¢V is the centroid of the radial basis function that can be
chosen from the data points.

The most commonly used radial basis functions are multiquadrics, inverse multiquadrics, Gaussians,
thin plate spline and cubic, which are listed in the second column of Table 1. Given an input vector x,
the output of the RBF network is given by

y= 10 =3 wigl (22)

Before the establishment of a RBF model, training sets or samples should be created. Perform the cal-
culation for g(X) so as to cover the range of values of x which are likely to occur. For some problems, these
calculations may involve procedure such as finite element method. The number of sampling points required
to accurately model the performance function is dependent on the number of random variables, the non-
linearity of the problem considered and the assigned computation accuracy. Guidelines on the “design” of
sampling points can be found in various statistical textbooks (Lawson and Erjavee, 2001) and neural net-
work monographs (Hecht-Nielsen, 1989; Haykin, 1999). These sampling data points are then used as the
training and testing data in the RBF computations so as to approximately represent the performance func-
tion g(X).

Consider a training set of s labeled pairs (X, y;), i =1,...,s, which represent samples of a multivariate
implicit performance function. Efficient training algorithms have been developed to minimize the sum
squared error by adaptively updating the free parameters of the RBF network. These parameters are the
receptive field centers (Centroids) of the hidden layer, the receptive field widths, and the output layer
weights. Finding the centers, width and weights of the hidden nodes constitutes the training of an RBF net-
work. For optimal performance of an RBF network the position of the centers and width of the hidden
nodes is critical. Generally, the position of the centroids and the width of the radial basis functions are ob-
tained by an unsupervised learning rule, whereas the weights of the output layer are calculated by a super-
vised, single-shot process using pseudo-inverse matrices, normal equations method or singular value
decomposition (Press et al., 1992). According to Eq. (2.2), the RBF network may be viewed as approximat-
ing a desired function f{x) by superposition of non-orthogonal bell-shaped basis functions. The degree of
accuracy can be controlled by the above-mentioned three parameters: the centers, width and weights. For
more details on the training algorithm of RBF network, refer to Bishop (1995) and Haykin (1999), etc.

An example is presented to demonstrate the capability of the RBF network to map (approximate) a com-
plicated nonlinear performance function. The performance function has the following form

v = fxn,x0,x3,00) = 0120 + (13)7 — () (2.3)

Series of input patterns were randomly generated for training and testing the RBF network using the
program described in Goh (1994). The training and testing data presented in Table 2 consist of 20 patterns
and 10 patterns, respectively. Multiquadrics RBFs are used. The width constant of RBF is 8, and the num-
ber of RBF in the hidden layer is 13. Comparative study is shown in Table 2 on model capability of MLP,
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Table 2
Comparison of model capability of MLP, RBF and polynomial regression
X1 X X3 X4 Actual y Computed y Computed y Computed y
(MLP) (polynomial regression) (RBF network)
Training data
2.5 4.6 3.7 1.3 24.12 16.07 24.00 24.06
2.4 35 2.1 3 11.49 11.28 12.33 11.43
2.9 2 1.5 1 7.05 13.74 6.89 7.02
33 2.4 4.2 3 24.24 21.99 25.08 24.15
22 5 22 3.7 14.45 12.91 16.01 14.52
4 4.1 1.8 1.2 18.59 29.32 18.17 18.63
1.1 2 1.2 43 2.20 24.17 0.99 2.23
1.8 1.8 49 1.9 26.08 10.57 25.33 26.03
4 4.7 2.1 4.6 21.75 13.76 20.60 21.89
4.1 4.6 3.1 33 27.12 20.70 25.57 27.03
4.1 4.8 2.6 2.4 25.20 24.89 23.35 24.84
1.6 2.1 4.1 3.6 18.79 19.26 16.82 18.75
22 5 3.1 1.4 19.52 20.25 19.60 19.60
2.4 4.5 3.9 4.1 24.59 25.62 25.59 24.58
4.2 3.8 3.7 3.5 28.28 28.48 27.99 28.33
4.8 22 1.7 42 12.02 10.94 14.48 12.00
4.3 1.1 2.8 2.4 11.33 12.83 11.96 11.15
1.2 3 4.5 2.7 22.57 23.01 22.98 22.65
1.6 4.7 42 1.5 24.05 23.80 25.86 24.04
4.3 2.7 3.2 1.8 20.69 21.75 20.54 21.19
MSE 0.77 1.41 0.024
Testing data
33 1.5 3.5 1.5 16.09 16.07 14.57 16.76
2.9 2.4 2.5 3.8 11.81 11.28 11.39 11.98
2.5 3 2.6 3.7 12.87 13.74 12.63 13.20
5 25 3.3 1.6 22.27 21.99 22.44 22.54
2.8 1.2 34 2.5 13.66 12.91 11.29 13.81
43 44 3.7 2.1 31.41 29.32 29.89 30.61
5 2.4 3.7 4.6 24.23 24.17 25.07 24.25
4.2 22 1.8 1.6 11.36 10.57 12.63 11.40
34 4 1.7 3.5 15.12 13.76 16.55 14.88
2.5 1.5 4.3 3.2 20.90 20.70 19.77 20.55
MSE 0.86 1.62 0.15

RBF network and polynomial regression. The results of MLP and polynomial regression are from Goh and
Kulhawy (2003). Table 2 shows that the mean squared error (MSE) for the polynomial regression model is
about two times that of the MLP network, and about ten times that of the RBF network.

2.2. Computation derivatives using RBF network

After the RBF model is established and trained satisfactorily, partial derivatives of performance func-
tions can be computed by extracting the information (centers, width and weights etc.) of the trained
RBF model. In this process, mathematical expressions are obtained that approximately represent the im-
plicit performance function and the partial derivatives. Since there exist differential rule and integral rule
in calculus, three methods are reported here to compute performance function derivatives by RBF network.
Differential rule is used in RBF network method 1, while integral rule is used in RBF network method 2
and RBF network method 3, in which the approximation of two-variate function f{x, x,) is considered,
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and the procedure for functions of three or more variables can be similarly developed (Mai-Duy and Tran-
Cong, 2003).

2.2.1. RBF network method 1

In this method, the original function f{x) is first approximated in terms of radial basis functions as indi-
cated in Eq. (2.2). The partial derivatives are calculated by the differential rule.

According to Eq. (2.2), the first order partial derivatives of the approximate function f{x) can be calcu-
lated as follows

) = ) = 5o = 3w 2 ) 04

i=1 i=1
where f(x) is the derivative function with respect to x;. A (x) =

)
84’ (” is the corresponding basis function

for the derivative function f (x) which is obtained by differentiating the original basis function ¢'”(x) which

is continuously differentiable. The 4(x) of the most commonly used radial basis functions is listed in the
third column of Table 1.

Similarly, the second order partial derivatives of the approximate function f{x) can be calculated as
follows

o) =518 - Z WO (5) = i wo 2t =y Wl it 2.5)
2

Of(x) _ ¢
f]k( ) ox axk ; Z w! axk -
The Zj@ (x) and hk (x) of the most commonly used rad1al ba51s functions are listed in the fourth and fifth

column of Table 1. From Egs. (2.4)—(2.6), it can be seen that computation of derivatives is intrinsically to
extract information from the established and successfully trained RBF network.

) (2.6)

axjéxk

2.2.2. RBF network method 2
In this method, the first order partial derivative of f{x;,x,) with respect to x;, denoted by £y, is first approx-
imated in terms of radial basis functions. The original function f{x1,x,) is calculated by the integral rule.

1(x1,x2) Zw xl,xz (2.7)

where {¢”(x;,x,)}", is a set of radial basis functions and {w®}"  is a set of corresponding weights.
The original function can be calculated by integration method as follows

S(x1,x2) /fl x1,X2)dx; = /ZW (x1,x2) dxy = ZW’)/¢ (x1,x2) dx

= ZW xl,xz + C] ()Cz) (28)

where {H" (x;,x,)}" -, 1s the set of corresponding radial basis functions for the original function and is given
below. Gaussian radial basis function can’t be obtained analytically.

(1) For multiquadrics

. N2
| (xl B cg:)) [T r a0z 2 <x1 _ cg')) 1 g2
HY(x),x,) = 3 + 7 In ((xl — ) +Vr2+ a(i>2) (2.9)
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(2) For inverse multiquadrics
HY(x1,x,) = In ((xl - c@) +Vr+ a(")> (2.10)

(3) For thin plate spline

i 1 i 3 i 2 i 3 i i 2 i
H(x;,x,) = 3 (x1 - c§)> In(a?r?) — 0a0 (xl - cp) + <x1 - c(l>) (xz - cg)) In(a"r?)
4 ; 1\ 2 4 i xi —
_ _ D _ .0 _ 0 1 1
340 <x1 1 )(xz ¢ ) + 320 (xZ ¢ ) arctan <x2 - cé”) (2.11)
Ci(x») in Eq. (2.8) is a function of the variables x, and can be interpolated as follows.
M
Cl(x) =Y wg(xy) (2.12)
=1
M - B ~
Cl(xy) = / Cl(x)dr, =Y WH(xy) + C, (2.13)
=1
Ci(xy) = / Cl(w)dxy = Y wH" (x) + Coxy + C (2.14)

where C . and 6’2 are constants of integration; w”) is the corresponding weights; and M is the number of
centers whose x, coordinates are distinct.

(1) For multiquadrics

2
_ 0 O] (2 )
) (xZ ) )\/(xZ © ) +a (i)2 . N2
HY (x,) = +% (xz — cg)) + \/(xz — 0(2’)> + a<i)2> (2.15)

2 2

N\ 2 )
(<x2 — ng)) + a(’)2> a(i)z 4 4 NG
S e & VLI (CREDRR (R R

(@2 N 2
— a2 \/(xz — c(2'>) + a2 (2.16)

(2) For inverse multiquadrics

HO(w) = ((M — Y[+ amz) 1)
7" (x2) = /H(i)(xz)de = (Xz — cg)) In ((xz - cg”) + \/(xZ - Cg))z + aW)
_ \/ (52— )+ a2 (2.18)
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The training to determine the weights in Eqgs. (2.7) and (2.8) is equivalent to minimization of the follow-
ing sum squared error (SSE) (Mai-Duy and Tran-Cong, 2003)

SSE = Z{U ( W)] (2.19)

Eq. (2.8) is used in (2.19) in the minimization procedure, which results in a system of equations in terms
of the unknown parameters, which are composed of the weights in (2.8), the second set of weights in (2.14)
and the constants of integration C;, C,. The data used in training the network for the derivatives and the
performance functions just consists of a set of discrete values y; = g(X)), i=1,...,s of the dependent vari-
ables. Upon applying the general linear least squares principle, a system of linear algebraic equations con-
taining unknown variables can be obtained. Singular value decomposition method can be used to solve Eq.
(2.19) for the unknowns and the constant of integration in the remainder of this paper. After solving Eq.
(2.19), a set of welghts can be obtained and used for approximating the derivative function via Eq. (2.7) and
together with W' , C, and C, for estimating the original function via Eq. (2.8).

The strategy of approximation is similar for the derivative function of f{x;, x;) with respect to the var-
iable x,. Once the first order derivatives are obtained, the second order partial derivative of f{x;, x,) with
respect to x; is first approximated in terms of radial basis functions, the first order derivatives function can
be calculated by integration method, and then the second order partial derivative can be solved.

2.2.3. RBF network method 3

In this method, the second order derivative functions are first approximated in terms of radial basis func-
tions. The first order derivative is calculated by the integral rule. And the original function is calculated by
integrating the first order derivative.

There are two cases: in one case, /11 ( e ) or f ( ) is first approximated; in the other case, £/, (a;C L) or
f21 (622{51) is first approleated
2.2.3.1. In the case of f;;. Suppose f 1 is first approximated in terms of radial basis functions
Snlx,x2) ZW (x1,2) (2.20)

where {¢! (xl,xz)};”:] is a set of radial basis functions and {w®}" | is the set of corresponding weights.
The first derivative function, f;, can be calculated as follows

Xl,xz /fll xl,xz Xm /ZW x17x2 dxl ZW /‘f’ Xl,xz

—ZW xth +C1(X2) (221)

The basis functions for f; are given by (2.9) or (2.10). C;(x;) can be calculated by Eq. (2.14).
The original function, f, can be calculated as follows

f(xl,xz):/fl(xl,xz)dxlz/ [Zw xl,xz ) + Ci(x2)

1[ /H xl,xz)dxl} /Cl(xz)dxl
(@)

WO (x1,35) + / Ci(6)dxs + Ca () (2.22)

dx

[
Ms

I

3

1
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The basis functions for f are obtained by integrating (2.9) or (2.10) and shown below.

(1) For multiquadrics

ﬁ(l)(xl,.Xz) :/H(i)(xl,xZ)dX1
0%

2 s P — (x1 —c ) + a?
:(r +a) + (xl—cl)ln<(x1—cl>+ r2+a(i)2)
6 2
N2
P — <x1 — c(1'>

) + a(i)z
. AT (223)

2
(2) For inverse multiquadrics

" (x1,7%0) = /H@ (r1,x2) dxy = (xl - C(li)) In ((xl - C(li)) +Vr a(m) VPt al? (2.24)

The original function is calculated as follows

M

fx,x) = ZWO)EU)(XMJQ) + C1(x2)x1 + Ca(x2) (2.25)

i=1

where Cj(x;) and Cy(x,) are constants of integration which are interpolated in the same manner as showed
by Egs. (2.12)—(2.14). Similarly, the SSE function as in Eq. (2.19) can be established and solved using sin-
gular value decomposition method.

2.2.3.2. In the case of f>;. Suppose f»; is first approximated in terms of radial basis functions
Sar(x1,x2) Z w?® (x,x2) (2.26)

where {¢”(x;,x2)}7, is a set of radial basis functions and {w®}"  is the set of corresponding weights.
The first derivative function, f,, can be calculated as follows

xl,xz /le x17x2 dxl /ZW x17X2 dxl ZW /(b xl,xz
= ZW )C] X2 +C1(X2) (227)

The basis functions for f, are given by (2.9) or (2.10). Ci(x,) can be calculated by Eq. (2.14).
The original function, f, can be calculated as follows

f(xl,xz):/fg(xhxz)dxz:/ lzw )(r1,x2) + i (x2)

_ Z {Wm / H<f>(x1,x2)dxz} + / C(x2)dx;

dx,
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*ZW X] X2 /Cl(XZ)dX2+C2(X1)

:Zwmﬁ( (x1,% —|—Zw (x2) += C1x2+C2x2+C3(x1) (2.28)
i=1

Similarly, the SSE function as in Eq. (2.19) can be established and solved using singular value decom-

position method. The basis functions H g (x1,x,) are obtained by integrating (2.9) or (2.10) and are com-
plex, so only those for inverse multiquadrics are listed in (2.29) and (2.30). The integrals listed in
Appendix A are useful for integrating (2.9) or (2.10). Cs3(x;) can be interpolated in the same manner as
showed by (2.12)—(2.14).

For inverse multiquadrics,

2
()
= (xz — % ; N2 ‘
H(xz) = f) In ((xz _ C(Zt)) + \/(x2 . cg)) + a(,)z)
3 (Xz — Cé”) 2 (02 _ R
T a \/(’“2 ~) a2~ In ((xz ~) + \/ (o= el) + a<i>2>; (2.29)

1" (x1,x) :/Hm(%xz)dxz:/ln <X1 —C(li)> + ”2+a(i>2} dx;

- (x2 — ¢l ) In(b +s) — h. (2.30)
where
. 27172
b=x - s= [q—i— <x2 — cg)) }
el — et b’

h= G ——butox ng

g=b0+a"? u=In

a(’)

e b
v=2% ﬁ* arctan <#)
al

3. RBF based reliability analysis approaches

RBF-based reliability analysis is to construct an RBF network to approximate and replace the (implicit
and often complex) performance function or the derivative functions. Then values of performance function
are easily available because of the robust RBF generalization capability. The values of the first-order or the
second-order partial derivatives can be readily computed as mentioned in Section 2. Because the values and
partial derivatives of the performance function are both readily available through the RBF algorithms, the
FORM, the SORM or the MCS can be implemented without difficulty. A strict mathematical verification on
using a three-layer artificial neural network to substitute for an implicit performance function is presented in
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Identify random variables and define the performance function
v
Convert the correlated variables to uncorrelated variables;
Modify the original performance function of correlated variablesinto a
function of uncorrelated variables

A 4
Determine RBF network’s geometry and parameters
v
Prepare the training set and validation set
v
Train the RBF network until the errors are acceptable
v ¢ v
Perform the generalization | | Calculate 1¥ derivatives using Calculate 1% and 2™
of RBF network RBF network method 1, RBF derivatives using RBF
network method 2, or RBF network method 1, RBF
network method 3 network method 2, or RBF
network method 3
A 2 v v
RBF based MCS RBF based FORM RBF based SORM

[ ]
v ¥
Calculate failure probability
from outputs of RBF

network

Calculate reliability index or
failure probability

Fig. 2. Outline of RBF based MCS, RBF based FORM and RBF based SORM.

Deng et al. (2003, 2005). In the following, three RBF-based reliability analysis methods are consecutively
introduced, i.e. RBF based MCS, RBF based FORM, and RBF based SORM, which are outlined in Fig. 2.

3.1. RBF based MCS

The computation procedure of the RBF based MCS is proposed in Fig. 2. The RBF is used to model or
approximate the performance function, g(X). This RBF based MCS employs the robust generality capabil-
ity of RBF to compute the N values of implicit performance function. Among the N results, suppose there
are Ny number of the performance function whose value is less than zero. Then the probability of failure p;
can be estimated using the following equation.

:%, (3.1)

When some or all the random variables are correlated, the first step that needs consideration is to con-
vert the correlated random variables to uncorrelated or statistically independent random variables. The
methods proposed by Morgenstern (1956) or Nataf (1962) can be used to convert the correlated random
variables to uncorrelated random variables. The second step is to modify the original performance function
expressed in terms of correlated variables into a function of uncorrelated random variables. For more de-
tails read the reference (Haldar and Mahadevan, 2000). The RBF network could be established to model
the modified implicit performance function, and MCS method can be performed as described in the preced-
ing paragraph.

pr = Plg(X) <0]
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3.2. RBF based FORM

Outline of RBF based FORM is showed in Fig. 2. The RBF based FORM differentiates itself from other
FORMs in that it employs the RBF to simultaneously approximate the performance function and its first-
order partial derivatives. The performance function is supposed to be

Z:g(X):g(Xl»X27~"aXn) (32)

where the vector X = {X1,X>,..., X} is the basic random variables in the original coordinate system and n
is the number of random variables. The vector X' = {X',X’,..., X} is random variables in the reduced
coordinate system (equivalent standard normal space) (Haldar and Mahadevan, 2000). It is denoted by
the vector x* = {x},x3,...,x}} as the coordinates of the design point in the original coordinate system,
and by x* = {x]",x5,...,x*} as the coordinates of the design point in the reduced coordinate system.

The calculation steps of RBF based FORM can be described as follows:

Step 1. Identify the random variables, specify their associated probabilistic characters (such as mean values
and coefficient of variation), and define the performance function.

Step 2. Assume initial values of the design point x* = {x},x3,...,x*}, and compute the corresponding
value of the performance function g(-).

Step 3. Compute the mean (uy ) and standard deviation (oY) at the design point of the equivalent normal
distribution for those variables that are non-normal by using the Rackwitz and Fiessler method

(1976).

oy - HO i) 63
and

wy, = x; — & [Fy, (x)]oy, (3.4)

where @' is the inverse CDF of the standard normal variate, uy, and gy are the mean and stan-
dard deviation of he equivalent normal variable at the design point, F,(x}) is the CDF of the ori-
ginal nonnormal variables, ¢ and fy,(x;) are the PDFs of the equivalent standard normal and the
original nonnormal random variable. The coordinates of the design point in the equivalent stan-
dard normal space are
N

X

(3.5)

N
oy,

Step 4. Establish the RBF model of the performance function. Compute the first order partial derivatives

a%g ) using the RBF technique at the design point x;.
Step 5. Coﬁlpute the partial derivatives % , in the equivalent standard normal space by the chain rule of
differentiation. G
og og v
- ' 3.6
aX; xX* (aXl xf) JX' ( )

Step 6. Compute the new values for the design point in the equivalent standard normal space (x'*) using
the following recursive formula:

1
X1 = |

——— [Ve(x})'x; — g(x;)| Vg (x} 3.7
Vg(x;j)|2[ g(x;) 2(x;)| Ve(x{) (3.7)
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where g(x;") and Vg(x}) are respectively the values and the gradient vector of the performance
function at point x;* at the k—th iteration point; Subscript k refers to the iteration number. There-
fore x| is a vector with the components {x};, x5, ...,x’%}"; x| is the vector at the (k + 1)-th iter-
ation point.

Step 7. Compute the distance f to this new design point from the origin and check the convergence crite-

rion for S(|Af]| < & ?).

B=y /2 ) (3.8)

where ¢; is a predetermined tolerance level, say 0.001.
Step 8. Compute the new values for the design point in the original space (x}) as follows

X =, o (3.9)

Compute the value of the performance function g(-) for this new design point, and check the con-
vergence criterion for g(*)[|g(*)] < & ?], where ¢, is a predetermined tolerance level, say 0.001. If both
convergence criterions are satisfied, stop. Otherwise, repeat steps 3 through 8 until convergence
occurs.

3.3. RBF based SORM

Outline of RBF based SORM is showed in Fig. 2. The failure probability p; can be calculated using the
second-order reliability method (SORM) as follows (Breitung, 1984).
n—1
pr=0(=B) [T+ k)2 (3.10)
i1
where @(') is the CDF of the standard normal variate, /5 is the reliability index using FORM in Section 3.3,
and k; is the principal curvature of the limit state at the minimum distance point, n is the number of basic
variables. Eq. (3.10) shows that SORM improves the FORM result by including additional information
about the curvature of the limit state.
In addition to presenting the results of the probabilistic reliability methods in terms of probability of
failure, the reliability index f3, is commonly used in SORM analyses, as was proposed by Hasofer and Lind
(1974). The relation between the probability of failure p; and the reliability index f3, is given by

pr=P(=p) =1-9(8,) (3.11)
where @(+) is the CDF of the standard normal variate, /3, is the reliability index computed by using SORM.
The RBF based SORM differentiates itself from other SORMs (Breitung, 1984; Nowak and Collins,
2000; Rackwitz and Fiessler, 1978) in that it employs the RBF to compute the first and second-order deriv-
atives of the implicit performance function. Eq. (3.10) indicates that to compute failure probability of

SORM, the reliability index using FORM f and the principal curvature k; should be known first. The com-
putation steps of the principal curvature k; are outlined as follows.

Step 1. Transform X to the equivalent uncorrelated standard normal space Y. Suppose all the variables X
are uncorrelated, and we have
X — /"%,.

o

Yi:

(3.12)
where yy and o} are respectively the equivalent normal mean and standard deviation of X; at the
design point x;, X; is the random variable in the original space, and Y; refers to the random variable
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in the equivalent uncorrelated standard normal space. The transformation from X; to Y; for cor-
related variables was discussed in Shinozuka (1983) and Haldar and Mahadevan (2000).
Step 2. Transform Y space to Y’ space using the following orthogonal transformation:

Y =RY (3.13)
where R is the rotation matrix. For the case of two random variables, it can be expressed as follows.
[ cosf) sinf ]

. (3.14)
—sinf cos0

where 0 is the angle of rotation. For the case of more than two random variables, the R matrix is
computed in two steps (Haldar and Mahadevan, 2000).
Step 3. Compute matrix 4 whose elements are computed as follows.
(RDR), 1,2 1 (3.15)
@y =i Li=12,...,n— .
T VG(y)
where D is the n X n second-order derivative matrix of the limit-state surface in the standard normal
space evaluated at the design point; R is the rotation matrix; and |VG(y*)| is the length of the gra-
dient vector in the standard normal space. D and |VG(y*)| are calculated using RBF network.
Step 4. Compute the eigenvalues of the matrix 4 for the principal curvature k;. Once the k;’s and f§ are com-
puted, Eq. (3.10) can be used to compute the second-order estimate of the probability of failure.

3.4. RBF based reliability analysis with correlated variables

Consider the X;’s in Eq. (3.2) to be correlated variables with means ., standard deviation oy,, and the
covariance matrix represented as

6?(1 COV(Xl,X2) COV(Xl,X,,)

Cov (X5, X1) a3, ... Cov(Xy,X,)

€)= . . . . (3.16)
Cov(X,,X;) Cov(X,,X) ... 0%,

The reduced variables X are defined as
Xi— ty,

X ="TB g0 (3.17)

Oy

i

Then the covariance matrix of the reduced variables X’ is

L v o Pry,

Px,.x, 1 s Pxyx,

=1 . : : : (3.18)

Px,x, Px,x, -+ 1

where py, v, is the correlation coefficient of the X; and X; variables.

The RBF based FORM and SORM methods can be used if the X;’s are transformed into uncorrelated
reduced normal Z variables and Eq. (3.2) is expressed in terms of the Z variables. This can be done using
the following equation (Haldar and Mahadevan, 2000):
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0

X} = oy (7] 2] + {0y} (3.19)
0

where ,uﬁi and aﬁ}", are respectively the equivalent normal mean and standard deviation of X; at the design
point, and T is a transformation matrix to convert the correlated reduced X’ variables to uncorrelated re-
duced normal Z variables. The matrix containing the equivalent normal standard deviations in Eq. (3.19) is
a diagonal matrix. The 7 matrix can be shown as

o o .
o p@ g

m=|> " ? (3.20)
o 02 W

[T]is basically an orthogonal transformation matrlx consisting of the eigenvectors of the correlation ma-
trix [C']. {6} is the eigenvector of the ith mode. 91 ,02), e 6() are the components of the ith eigenvector.

Using Eq. (3.19), we can write Eq. (3.2) in terms of reduced uncorrelated normal Z variables. Then the
RBF based FORM and SORM methods can be used in reliability analysis as described in Sections 3.2 and
3.3.

4. Applications
4.1. Example 1: A hypothetical nonlinear limit state

This example comes from Kaymaz (2005) and Kim and Na (1997) in which the limit state is defined as
g(X) = exp[0.4(x; +2) + 6.2] — exp[0.3x, + 5.0] — 200 (4.1)

where x; and x, are assumed to be independent and have a standard normal distribution with zero mean
and unit standard deviation. The function g(X) and its partial derivatives are approximated by a RBF net-
work. The training set consists of 289 (17 x 17) points, which are uniformly spaced along x; and x, on
[—4,4]. The test set contains 196 (14 x 14) points, which are also uniformly spaced along x; and x, on
[—4,4].

Parameters to be decided before the start of network training are the number of centers m1, their locations
{c}" and a set of the corresponding width {a®}" . According to Cover’s Theorem (Haykin, 1999), the
more basis functions are used, the better the approximation will be and so all data points will be taken to be
the centers of the network (m = n) in this study. Thus {¢® = x?}" . The width of the ith basis function is
determined according to the following relation

a = pd® (4.2)

where 7 is a factor, 5 > 0, and d” is the distance from the ith center to the nearest neighboring center. As a
measure of the accuracy of different approximate schemes, a standard error norm of the solution, N,, is
defined as

mo ) £0))?
N, = Z;:l(y f) (4.3)

n;

where /” and »'? are the calculated and exact function values at the point i, and #, is the total number of the
testing nodes. Smaller N, s indicates more accurate approximations.
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;ik;l; t3he approximate function and its derivatives for n = §(5, 2) with RBF method 1
Original function Gaussians Multiquadrics Inverse multiquadrics
0.0952 (0.0678, 0.0503) 0.1446 (0.0631, 0.0564) 0.1033 (0.0465, 0.2297)
First derivative
of 0.3204 (0.3025, 0.1800) 0.5295 (0.2183, 0.0964) 0.3943 (0.1553, 0.3874)
Ox;
of 0.0752 (0.0385, 0.1011) 0.1157 (0.0631, 0.1503) 0.0852 (0.0348, 0.2317)
Oxy

Second derivative

2 1.0558 (1.5174, 2.1357) 2.1457 (1.5397, 2.0887) 1.9993 (1.5181, 8.7112)
ox?
f 0.0836 (0.1020, 0.9752) 0.3082 (0.3408, 1.3151) 0.2697 (0.1922, 2.2098)
o3

oif 0.2060 (0.1438, 0.1565) 0.1776 (0.1238, 0.1658) 0.2166 (0.1636, 0.4853)
@x16x2

Note: The numbers in parenthesis correspond to 7 =5 and 5 = 2, respectively.

Table 3 shows the standard error norms N,’s of the approximate function and its first and second deriv-
atives that are obtained from the RBF network method 1 at different factors (3 =8, 5, 2), using different
types of radial basis function based on the 289 testing points. It can be seen that the errors of the approx-
imate original function are the lowest, then the approximate first derivatives, and the errors of the approx-
imate second derivatives are the highest. Fig. 3 clearly illustrates this very good approximation
phenomenon of the exact and the approximate function, its first and second derivatives, in which n =2
and Gaussian radial basis function is used.

Reliability analysis using RBF based FORM of this problem can be performed. The computation steps
using Multiquadrics (MQ) in RBF method 1 are listed in Table 4. The computation steps using Inverse
Multiquadrics (IMQ) and Gaussian (Gau) in RBF method 1 are omitted for simplicity, but the results
are listed in Table 6. The reliability index f§ = 2.7099, and probability of failure pr = 0.003365. Results from
FORM method using the analytical first order derivatives are listed in Table 5, in which = 2.7099 and
pr=0.003365. The computations of RBF based FORM and analytical FORM both have 6 cycles. The
probability of failure and reliability index of the same problem can also be computed using RBF based
MCS with 100000 simulations. RBF network method 1 is used in RBF network. The same problem is also
solved by Adaptive Monte-Carlo simulation, the classical response surface method, and the kriging method
(Kaymaz, 2005; Kim and Na, 1997). All the results are summarized in Table 6. Probability of failure, reli-
ability index and design points are compared. Conclusions could be drawn from these results that the pro-
posed methods result in quite comparable accuracy.

4.2. Example 2: For RBF based MCS

The example to illustrate the RBF based MCS is the reliability analysis of the frame structure in Fig. 4.
The performance function for this structural safety may be defined as.
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Fig. 3. The exact and the approximate function, its first and second derivatives, in which # = 2 and Gaussian radial basis function is
used. The original function is g(X) = exp[0.4(x; + 2) + 6.2]— exp [0.3x, + 5.0] — 200.
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Table 4

RBF method 1 based FORM using multiquadrics for Example 1
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Step 1
Step 2
Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

g(X) = exp[0.4(x; + 2) + 6.2] — exp[0.3x, + 5.0] — 200

Initial values: xj = 0, x; = 0, g( ) = 748.2200

N
Ky

New x|
New x5
New f
Ap
New x}
New x3

New g( )

Computational cycle

0

437.2296

—44.444]

437.2296

—44.4441

—1.6938
0.1722

1.7025

—1.6938
0.1722
200.6780

I

0

—1.6938

0.1722

222.4450

—46.7345

222.4450

—46.7345

—2.5208
0.5296

2.5759
0.8734

—2.5208
0.5296
26.1122

I

—2.5208

0.5296

159.7371

—52.1343

159.7371

—52.1343

—2.5821
0.8427

2.7161
0.1403

—2.5821
0.8427
—0.7089

111

—2.5821

0.8427

155.4137

—57.3564

155.4137

—57.3564

—2.5423
0.9382

2.7099
0.0062

—2.5423
0.9382
0.0026

v

—2.5423

0.9382

157.9674

—59.0628

157.9674

—59.0628

—2.5383
0.9490

2.7099
9.1378e—6

—2.5383
0.9490
0.0030

A%

—2.5383

0.9490

158.2267

—59.2571

158.2267

—59.2571

—2.5378
0.9504

2.7099
8.1353e—6

—2.5378
0.9504
4.2863e—4

VI

Note: Convergence criteria in steps 7 and 8: (1) |AS| < 0.001, (2) |g( )] <0.001. The final checking point is (—2.5378, 0.9504),

B =2.7099, pr = 0.003365, Multiquadrics was used in RBF method 1. " = 3.

g(X) = 0096 - uA(AI;A27A37A47A5aP)

(4.4)

where u3(X) denotes the horizontal displacement (unit: m) at the node 4 as the function of basic random
variables. In this equation, g(X) <0 indicates failure.

The six basic random variables include the column and bean cross-section areas A, A», Az, A4, As and
the wind load P. The statistical parameters of the basic random variables are listed in Table 7. All the vari-
ables are assumed to be uncorrelated. The Young’s modulus of all the members is assumed to be determin-
istic and is equal to 2.0 x 10’ kN/m”. The moments of inertia of the beam and the columns correlates with

the cross-section areas as follows
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Table 5
FORM method 2 for Example 1 using analytical derivatives
Step 1 g(X) = exp[0.4(x; + 2) + 6.2] — exp[0.3x; + 5.0] — 200
Step 2 Initial values: x] =0, x5 =0, g( ) = 748.2200
Step 3 w 0 0 0 0 0
ay 1 1 1 1 1
,u‘:’ 0 0 0 0 0
a 1 1 1 1 1
Xy 0 —1.6883 —2.5178 —2.5824 —2.5442
x5 0 0.1714 0.5286 0.8409 0.9337
Step 4 og\* 438.6533 223.2693 160.2291 156.1379 158.5444
&)
g\ —44.5239 —46.8728 —52.1748 —57.2999 —58.9170
&)
Step 5 dg\" 438.6533 223.2693 160.2291 156.1379 158.5444
(&)
og\* —44.5239 —46.8728 —52.1748 —57.2999 —58.9170
(=)
Step 6 New x{* —1.6883 —2.5178 —2.5824 —2.5442 —2.5402
New x5 0.1714 0.5286 0.8409 0.9337 0.9440
Step 7 New f 1.6970 2.5726 2.7159 2.7101 2.7099
AB 0.8756 0.1432 0.0058 1.9253¢—4
Step 8 New x} —1.6883 —2.5178 —2.5824 —2.5442 —2.5402
New x} 0.1714 0.5286 0.8409 0.9337 0.9440
New g( ) 201.9305 26.6568 —0.6550 —0.0288 —4.2763¢—4
Computational cycle 1 I 111 v A\

Note: Convergence criteria in steps 7 and 8: (1) |AB] < 0.001, (2) |g( )| <0.001. The final checking point is (—2.5402, 0.9440),
B =2.7099, pr = 0.003365.

I,:OClAlz (l:1,2,75) (45)

where I; are the moments of inertia and «; are coefficients whose values are listed in Table 7.

The performance function of this problem does not explicitly contain any of the six basic random vari-
ables. The response variable u 4 is dependent on the random variables and the deterministic variables, which
cannot be expressed as a closed-form function. Instead, it has to be evaluated using the FEM. The perfor-
mance function is implicit. A three-layer RBF network is established to represent the implicit performance
function. The input layer has 6 neurons, and the output layer 1 neuron. The six variables in Table 7 are
designed as the input variables. The performance function is the output variable. The training and testing
samples consist of 257 patterns and 20 patterns. The RBF training is to determine the RBF unknown
weights, and singular value decomposition method is used.

One hundred thousand sample values of the six basic random variables were generated according to their
respective probabilistic distributions. These values were fed into the established RBF as input vectors.
Then the RBF outputs 100,000 values of the performance function corresponding to the input vectors
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Table 6
Results of Example 1 using different methods
Methods Probability of failure Reliability index Design point
Adaptive Monte-Carlo simulation 0.00358 2.689 (—2.531, 0.9693)
Classical response surface method 0.003892 2.661 (—2.533, 0.8195)
The kriging method 0.003051 2.742 (—2.648, 0.710)
FORM (analytical derivatives) 0.0033651 2.7099 (—2.5402, 0.944)
RBF based FORM (RBF network method 1) IMQ 0.0033649 2.7099 (—2.5434, 0.9354)
MQ 0.0033650 2.7099 (—2.5378, 0.9504)
Gau 0.0033651 2.7099 (—2.5373, 0.9515)
RBF based MCS (RBF network method 1) IMQ 0.003603 2.6872
MQ 0.003839 2.6659
Gau 0.003981 2.6537
P — o A
4 5 4 i
= |2 1 1 2
2 4 1 > 1 4 2
P — =
2 4 1 > 1 4 2
P —a—
2 4 1 > 1 4 2
P —
4 5 4 £
2 1 1 2 o
P — J
4 5 4 a4
P -— 2 1 1 2 =
4 5 4 Y
P 1 3 3 1
1 4 3 > 3 4 1
P —
1 4 3 > 3 4 1
P —
1 4 3 > 3 4 1
P —
1 4 3 > 3 4 1
P —==
4 5 4
1 3 7|3 1 !

| | | |
' 7.5m 3.5m 7.5m

Fig. 4. Frame structure for Example 2.

accordingly. From these 100,000 values, the probabilistic characteristics (e.g., CDF or PDF) of the perfor-
mance function can be extracted. And the probability of failure is estimated to be

pr = Plg(X) < 0] =0.07405 (4.6)
The result of the same problem from the modified response surface method without using mixed terms is
pr=0.07309 (Zhao, 1996). The result from Monte-Carlo simulation based on importance sampling using

2000 simulations is pr = 0.07506 (Zhao, 1996). It is evident that these results correspond quite well. The pro-
posed RBF based MCS combines the advantages of the conventional MCS and the RBF technique.
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Table 7

Statistical data for Example 2 of RBF based MCS

Variables Mean Standard deviation Type of distribution Coefficient o;
A4, 0.25m? 0.025 Lognormal 0.08333

A> 0.16 m? 0.016 Lognormal 0.08333

As 0.36 m* 0.036 Lognormal 0.08333

Ay 0.20 m* 0.020 Lognormal 0.26670

As 0.15m? 0.015 Lognormal 0.20000

P 30 kN 7.50 Gumbel (Fisher-Tipett extreme value type 1)

Consequently, the proposed methodology is applicable to structural reliability problems with a wide ar-
range of variations including the number of random variables, the random variable distributions and the
performance function.

4.3. Example 3: For RBF based FORM

The second example has been examined by Haldar and Mahadevan (2000) using the FORM method 2.
A W16 x 31 steel section made of A36 steel is suggested to carry an applied deterministic bending moment
of 1140 kip-in. The nominal yield stress F, of the steel is 38 ksi. The nominal plastic modulus of the section
Z is 54 in®. F, is assumed to be a lognormal variable with a mean of 38 ksi and a standard deviation of 3.8
ksi. Z is a normal variable with a mean of 54 in® and a standard deviation of 2.7 in>. Consider the strength
limit state equation:

g(-)=F,Z—1140 =0 (4.7)

The computation steps using the RBF based FORM are listed in Table 8§ RBF network method 1 and
RBF network method 2 are applied to compute the partial derivatives of performance function.

In RBF network method 1, a three-layer RBF network is established to represent the performance func-
tion, and the first order derivatives are computed by the RBF network using differential rule. The input
layer has 2 neurons, and the output layer 1 neuron. F,, and Z are designed as the input variables. The per-
formance function is the output variable. RBF network is trained on a small set of data with different input
values, with a set of 625 training samples, uniformly spaced within [u;—601, y; + 60;] and a distance of %,
and within [p,—605, > + 60,] and a distance of 3. Here u; and u, are the mean values of F, and Z, respec-
tively; o1 and o, are the standard deviation values of F, and Z, respectively.

In RBF network method 2, a three-layer RBF network is established to represent the first order partial
derivative of f{x;,x,) with respect to x;, and the original function f{x1,x,) is calculated by the integral rule.
The input layer has 2 neurons, and the output layer 1 neuron. F), and Z are designed as the input variables.
The first order partial derivative is the output variable. RBF network is trained on a small set of data with
different input values, with a set of 625 training samples, uniformly spaced within [¢;—601, g1 + 601] and a
distance of 3, and within [u,—602, u, + 60>] and a distance of 5. Here y; and p, are the mean values of F,
and Z, respectively; o, and o, are the standard deviation values of F, and Z, respectively. Another three-
layer RBF network is established to represent the first order partial derivative of f{x;,x,) with respect to x»,
and the original function f{x},x;) is calculated by the integral rule.

In the model of RBF network method 1, inverse multiquadrics (IMQ), multiquadrics (MQ), and Gauss-
ian (Gau) radial basis function were respectively used. In the model of RBF network method 2, only inverse
multiquadrics and multiquadrics radial basis function were used because Gaussian radial basis function
isn’t able to be integrated analytically.

Tables 8(a), 8(b) and 8(c) showed the computation steps of the RBF based FORM, in which inverse mul-
tiquadrics, multiquadrics and Gaussian basis function was used respectively in RBF network method 1.
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Table 8(a)
RBF method 1 based FORM using inverse multiquadrics for Example 3
Step 1 g( )=F,Z— 1140
Step 2 Initial values: f = 38, z* =54, g( ) =912.0
Step 3 '“% 37.8109 35.1146 34.9568 34.9998 35.0051
0_1;,- 3.7906 2.4400 2.4045 2.4141 2.4153
uy 54.00 54.00 54.00 54.00 54.00
ay 2.70 2.70 2.70 2.70 2.70
f",* 0.0499 —4.3661 —4.5132 —4.4734 —4.4684
z'* 0 —1.7657 —2.4727 —2.5538 —2.5620
Step 4 g\ " 53.9830 49.3857 47.4422 47.2386 47.2181
3
og\” 37.9955 24.4583 24.1204 24.2163 24.2281
oz
Step 5 og * 204.6255 120.5030 114.0743 114.0368 114.0437
og\” 102.5877 66.0375 65.1252 65.3840 65.4157
4
Step 6 New f}’ —3.5218 —4.5121 —4.4733 —4.4684 —4.4679
New z/* —1.7657 —2.4727 —2.5538 —2.5620 —2.5628
Step 7 New f 3.9397 5.1453 5.1510 5.1508 5.1508
Ap 1.2056 0.0057 1.6048e—4 1.7109¢—4
Step 8 New f 24.4612 24.1048 24.2008 24.2127 24.2139
New z* 49.2327 47.3237 47.1047 47.0826 47.0804
New g( ) 64.2919 0.7294 —0.0290 —0.0015 —1.2623e—4
Computational cycle 1 I I v \%

Note: Convergence criteria in steps 7 and 8: (1) |AS| < 0.001, (2) |g( )| <0.001. The final checking point is (24.2139, 47.0804),
B = 5.1508. Inverse multiquadrics was used in RBF method 1. ¢ = 6.

These tables show that although different radial basis functions were used, the computation results were
identical, i.e., the reliability index = 5.1508. However, when multiquadrics basis function was used, the
computation cycles were relatively small.

Tables 8(d) and 8(e) showed the computation steps of the RBF based FORM, in which inverse multi-
quadrics and multiquadrics basis function were used respectively in RBF network method 2. In both cases
there are four computation cycles. In Table 8(a) and Table 8(d) inverse multiquadrics basis function was
both used, the computation cycle in Table 8(d) is smaller than that of Table 8(a). The reason was probably
due to the derivative computation methods. RBF network method 2 was used in Table §(d) while RBF net-
work method 1 was used in Table §(a). RBF network method 2 gives more accurate derivatives of perfor-
mance function, as also pointed out by Mai-Duy and Tran-Cong (2003).

The computation steps of the FORM method 2 using analytical derivatives are listed in Table 9 for com-
parison (Haldar and Mahadevan, 2000). The solution is obtained after four iterations and the convergence
criteria are satisfied. The final checking point is (24.22, 47.07). The reliability index is f = 5.151. The results
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Table §(b)
RBF method 1 based FORM using multiquadrics for Example 3
Step 1 g()=F,Z—- 1140
Step 2 Initial values: f = 38, z* =54, g( ) =912.0
Step 3 u}"_ 37.8109 35.1148 34.9596 35.0022
o 3.7906 2.4401 2.4051 2.4146
ug 54.00 54.00 54.00 54.00
ay 2.70 2.70 2.70 2.70
n 0.0499 —4.3659 —4.5106 —4.4712
z'* 0 —1.7651 —2.4780 —2.5575
Step 4 og\" 53.9910 49.2554 47.3139 47.1009
oF,
g\" 37.9905 24.4608 24.1080 24.2068
oz
Step 5 og * 204.6558 120.1875 113.7954 113.7293
oF,
g \" 102.5743 66.0441 65.0916 65.3584
4
Step 6 New f}* —3.5217 —4.5096 —4.4711 —4.4659
New z'* —1.7651 —2.4780 —2.5575 —2.5665
Step 7 New f 3.9393 5.1456 5.1509 5.1508
Ap 1.2063 0.0053 1.0695¢—4
Step 8 New f 24.4617 24.1111 24.2061 24.2189
New z* 49.2342 47.3093 47.0947 47.0706
New g( ) 64.3535 0.6804 —0.0215 —3.7307e—4
Computational cycle I 11 111 v

Note: Convergence criteria in steps 7 and 8: (1) |AS| < 0.001, (2) |g( )| <0.001. The final checking point is (24.2189, 47.0706),

B = 5.1508. Multiquadrics was used in RBF method 1. ¢'” = 6.

for the same problem using multilayer perceptrons (Deng et al., 2005) are also listed in Table 10. The first-
order partial derivatives of the performance function were computed using a multilayer perceptron artificial
neural network. The final checking point is (24.2888, 46.9351). The reliability index is § = 5.15105.

All the results are summarized in Table 11 in which reliability index, design points and computational
cycle are compared. It can be concluded that both FORM methods have similar results. The difference
of the results mainly results from the different computation parameters and errors. Multilayer perceptrons
(MLP) method from Deng et al. (2005) has six computation cycles, while RBF methods have 4-5 cycles,
analytical derivatives method (i.e. FORM method 2 in Haldar and Mahadevan, 2000) has only four cycles.
However, computer programs are used for these computations, and no extra work is performed manually.

4.4. Example 4: For RBF based SORM

Reconsider the above problem and the strength limit state equation is

g(-)=F,Z—1140 =0
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Table 8(c)
RBF method 1 based FORM using Gaussian for Example 3
Step 1 g()=F,Z - 1140
Step 2 Initial values: f = 38, z* =54, g( ) =912.0
Step 3 u}’v 37.8109 35.0954 34.9418 35.0033 35.0126
oy 3.7906 2.4356 2.4012 2.4148 2.4169
;/Z\R 54.00 54.00 54.00 54.00 54.00
oy 2.70 2.70 2.70 2.70 2.70
5 0.0499 —4.3841 —4.5270 —4.4701 —4.4615
z/* 0 —1.7597 —2.4443 —2.5591 —2.5740
Step 4 og\” 53.9502 50.1673 48.2465 48.0458 48.0162
oF,
g\" 37.7189 24.4409 24.5643 24.7924 24.8035
oz
Step 5 og * 204.5009 122.1898 115.8483 116.0229 116.0518
oF,
g \" 101.8412 65.9904 66.3237 66.9396 66.9695
4
Step 6 New [} —3.5335 —4.5260 —4.4700 —4.4615 —4.4613
New z'* —1.7597 —2.4443 —2.5591 —2.5740 —2.5744
Step 7 New f 3.9474 5.1439 5.1507 5.1508 5.1508
Ap 1.1965 0.0068 6.8544e—5 9.2002e—5
Step 8 New £ 24.4172 24.0716 24.2086 24.2296 24.2301
New z* 49.2489 47.4003 47.0905 47.0501 47.0490
New g( ) 62.5209 1.0001 —0.0057 0.0027 1.3373e—4
Computational cycle 1 11 111 v \%

Note: Convergence criteria in steps 7 and 8: (1) |Af] < 0.001, (2) |g( )| < 0.001. The final checking point is (24.2301, 47.0490),
B = 5.1508. Gaussian was used in RBF method 1. ¢ = 6.

Assume that F), is a lognormal variable with a mean of 38 ksi and a standard deviation of 3.8 ksi. Zis a
normal variable with a mean of 54 in® and a standard deviation of 2.7 in®. SORM method is used to cal-
culate the reliability index. The computation steps of failure probability using RBF network method 3 is
discussed in detail.

In Table 9, we find that the final checking point in FORM of the original variable space using RBF
method 2 is (24.2192, 47.0700). The equivalent normal mean and standard deviation of F), at the design
point are 35.0025 and 2.4147, respectively. In the standard normal space, the design point is defined as:

~24.2192 — 35.0025

. — _4.4709 49
E, 2.4147 (4.9)
47.0700 — 54
V= % — —2.5580 (4.9b)

The direction cosines for F, and Z at the original design point are ——L3-1%___ — (0.8670 and
V/ 113.71507+65.35692

65.3569 = 0.4983, respectively. Consequently, the R matrix is defined as.

v/ 113.71507+-65.35692
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Table 8(d)
RBF method 2 based FORM using inverse multiquadrics for Example 3
Step 1 g()=F,Z—- 1140
Step 2 Initial values: f = 38, z* =54, g( ) =912.0
Step 3 u}’v 37.8109 35.1160 34.9602 35.0025
o 3.7906 2.4404 2.4052 2.4147
ug 54.00 54.00 54.00 54.00
ay 2.70 2.70 2.70 2.70
n 0.0499 —4.3648 —4.5101 —4.4709
z'* 0 —1.7650 —2.4789 —2.5580
Step 4 og\" 53.9988 49.2340 47.3074 47.0937
oF,
g\" 38.0016 24.4644 24.1119 24.2063
oz
Step 5 og * 204.6851 120.1488 113.7854 113.7150
oF,
g \" 102.6044 66.0538 65.1021 65.3569
4
Step 6 New f}* —3.5210 —4.5091 —4.4708 —4.4657
New z'* —1.7650 —2.4789 —2.5580 —2.5667
Step 7 New f 3.9386 5.1455 5.1509 5.1508
Ap 1.2069 0.0053 9.8073e—5
Step 8 New f 24.4644 24.1123 24.2068 24.2192
New z* 49.2345 47.3069 47.0935 47.0700
New g( ) 64.4947 0.6785 —0.0203 —3.0669¢—4
Computational cycle I 11 111 v

Note: Convergence criteria in steps 7 and 8: (1) |AS| < 0.001, (2) |g( )

B = 5.1508. Inverse multiquadrics was used in RBF method 2. ¢'” = 6.

~ [0.4983  —0.8670
~10.8670  0.4983 |’

< 0.001. The final checking point is (24.2192, 47.0700),

(4.10)

Using the chain rule of differentiation, the second order derivatives of the performance function in the
equivalent standard normal space are

oO°F,  OF, :
azg( ) :azg( ) (O’N)2
A R4 ‘
g ) g() v
o7~ oroz \ORo7)

(4.11a)

(4.11b)

(4.11c)
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Table 8(e)
RBF method 2 based FORM using multiquadrics for Example 3
Step 1 g( )=F,Z— 1140
Step 2 Initial values: f = 38, z* =54, g( ) =912.0
Step 3 ,u}’ 37.8109 35.1161 34.9601 35.0025
o 3.7906 2.4404 2.4052 2.4147
Wy 54.00 54.00 54.00 54.00
oy 2.70 2.70 2.70 2.70
5 0.0499 —4.3646 —4.5102 —4.4709
z'* 0 —1.7647 —2.4788 —2.5580
Step 4 og\” 54.0025 49.2342 47.3102 47.0964
oF,
og\” 37.9994 24.4629 24.1136 24.2086
oz
Step 5 og )* 204.6993 120.1506 113.7910 113.7219
oF,
g\~ 102.5985 66.0497 65.1067 65.3633
o7
Step 6 New f;* —3.5209 —4.5091 —4.4708 —4.4657
New z'* —1.7647 —2.4788 —2.5580 —2.5667
Step 7 New f 3.9384 5.1456 5.1509 5.1508
Ap 1.2071 0.0053 9.7103e—5
Step 8 New f 24.4647 24.1121 24.2068 24.2193
New z* 49.2352 47.3073 47.0933 47.0698
New g( ) 64.5246 0.6760 —0.0202 —2.8941e—4
Computational cycle 1 11 111 v

Note: Convergence criteria in steps 7 and 8: (1) |Af| < 0.001, (2) |g( )| < 0.001. The final checking point is (24.2193, 47.0698),
B = 5.1508. Multiquadrics was used in RBF method 2. ¢'” = 6.

The second order derivatives of the performance function in the original space can be obtained by the
RBF network method 3 as follows.

2
Tel) _ 6.9067¢ - 6 (4.12a)
OF,
62
Te0) _ 0010 (4.12b)
oz
o’g( )
= 1.0078. (4.12c)
OF,0Z

Therefore, the matrix D is found to be as follows.

_16.9067e — 6 x 2.4147%  1.0078 x 2.4147 x 2.7 ~[0.0000 6.5705
6.5705 0.0073

4.13
1.0078 x 2.4147 x 2.7 0.0010 x 2.7 (4.13)
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Table 9
FORM method 2 for Example 3, after Haldar and Mahadevan (2000)
Step 1 g )=F,Z - 1140
Step 2 Initial values: /) = 38, z* =54, g( ) =912.0
Step 3 u}’“ 37.81 35.116 34.960 35.003
o’%, 3.79 2.44 2.405 2.415
wy 54.00 54.00 54.00 54.00
oy 2.70 2.70 2.70 2.70
n 0.05 —4.365 —4.510 —4.471
z'* 0.00 —1.765 —2.479 —2.558
Step 4 og\" 54.00 49.235 47.307 47.093
oF,
g\" 38.00 24.464 24.112 24.207
oz
Step 5 og * 204.69 120.15 113.78 113.71
oF,
g \" 102.60 66.05 65.10 65.36
oz
Step 6 New [} —3.521 —4.509 —4.471 —4.466
New z'* —1.765 —2.479 —2.558 —2.567
Step 7 New f 3.939 5.145 5.151 5.151
Ap 1.206 0.006 0.0001
Step 8 New /' 24.464 24.112 24.207 24.22
New z* 49.235 47.307 47.093 47.07
New g( ) 64.500 0.679 —0.020 —0.0002
Computational cycle I I 111 v

Note: Convergence criteria in steps 7 and 8: (1) |AS] < 0.001, (2) |g( )| < 0.001. The final checking point is (24.22, 47.07), ff = 5.151.

Similarly, the first order derivatives of the performance function in the equivalent standard normal space

are defined as

Og( ) og()or, og() y

oF, " oF, OF, oF,
9g( ) _0%e() 0z _3e()

YA oz o7 oz

0z

(4.14a)

(4.14b)

The first order derivatives of the performance function in the original space can be obtained by the RBF

method as follows.

og( )
—47.
oF 7.0937

@g_() = 24.2063
/4

(4.15a)

(4.15b)
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Table 10
FORM using multilayer perceptrons for Example 3, after Deng et al. (2005)
Step 1 g( )=F,Z - 1140
Step 2 Initial values: 1y =38, z* =54, g( )=912.0
Step 3 uy 37.81 35.1154 34.9835 35.0331 35.0383 35.0389
o—ﬁ’r 3.79 2.4402 2.4104 24215 2.4227 2.4228
wy 54.00 54.00 54.00 54.00 54.00 54.00
ay 2.70 2.70 2.70 2.70 2.70 2.70
n 0.04987 —4.3653 —4.4885 —4.4424 —4.4375 —4.4370
z'* 0 —1.76476 —2.5145 —2.6056 —2.6154 —2.6165
Step 4 og\" 54 48.6835 46.7742 46.5658 46.5432 46.5407
OF,
og\” 38 24.6531 24.4928 24.6146 24.6276 24.6290
oz
Step 5 < og ) * 204.683 118.7990 112.7460 112.7603 112.7606 112.7604
oF,
og\” 102.579 66.5633 66.1305 66.4594 66.4946 66.4984
oz
Step 6 New f}* —3.52136 —4.4877 —4.4423 —4.4375 —4.4370 —4.43696
New z'* —1.76476 —2.5145 —2.6056 —2.6154 —2.6165 —2.6166
Step 7 New f 3.9388 5.1441 5.15008 5.15094 5.1510 5.15105
AB 1.2053 0.00598 —0.00086 0.00006 0.00005
Step 8 New f 24.4631 24.1644 24.2756 24.2847 24.2887 24.28885
New z* 49.2351 47.2109 49.9648 46.9383 46.9354 46.9351
New g( ) 64.4422 0.8244 0.102006 0.01338 0.001479 0.000164
Computational cycle I I I v A\ VI

Note: Convergence criteria in steps 7 and 8: (1) |AS| < 0.001, (2) |g( )| <0.001. The final checking point is (24.2888, 46.9351),
= 5.15108.

Table 11
Results of Example 3 using different methods
Methods Reliability index Design point Computational cycle
RBF based FORM (RBF network method 1) IMQ 5.1508 (24.2139, 47.0804) 5
MQ 5.1508 (24.2189, 47.0706) 4
Gau 5.1508 (24.2301, 7.0490) 5
RBF based FORM (RBF network method 2) IMQ 5.1508 (24.2192, 47.0700) 4
MQ 5.1508 (24.2193, 7.0698) 4
FORM method 2 5.151 (24.22, 47.07) 4
FORM using MLP 5.15105 (24.2888, 46.9351) 6

Therefore, at the design point, the gradient vector in the standard normal space can be determined as
follows.



J. Deng | International Journal of Solids and Structures 43 (2006) 3255-3291 3285

) e 47.0937 x 2.4147 113.7150
VG(H*) = Vb = = (4.16)
sl ) 24.2063 x 2.7 65.3569
The length of this vector is
IVG(")| = \/(113.7150)2 + (65.3569)% = 131.1588 (4.17)

The matrix A is computed as follows:

(RDR') 1 [0.4983 —0.86707[0.0000 6.57057[0.4983 —0.8670

VGO T 1311588 {0.8670 0.4983H6.5705 0.0073”0.8670 0.4983
20.0432  —0.0252

:[—0.0252 —0.0433}

[A]
(4.18)

Furthermore, the principal curvature k| = a;; = —0.041735. Finally, the probability of failure using
SORM in combination with RBF method is as follows.

Py, ~ B(—5.1508)[1 + 5.1508 x (—0.0432)] = = 1.4711 x 10”7 (4.19)

The safety index is determined as follows.

Bsorm = —@ 1 (1.4711 x 1077) = 5.1271. (4.20)
The results of this example by Haldar and Mahadevan (2000) are as follows.
py, ~ 1.4708 x 1077 (4.21)
and
Psorm = 5.1272. (4.22)

No significant differences can be observed between results in Eqgs. (4.19) and (4.21) or between Eqs. (4.20)
and (4.22).

If the partial derivatives were computed by RBF network method 1, the final checking point in FORM
of the original variable space using RBF method 1 is (24.2139, 47.0804). The results of main computation
steps are listed as follows.

B {0.4976 0.8674]
- 10.8674  0.4976

l 0.1389 x 2.4153>  1.0029 x 2.4153 x 2.7]

[0.8102 6.5404]

1.0029 x 2.4153 x 2.7 0.0118 x 2.72 6.5404  0.0858
w60 { 114.0437}
YT 654157

(RDR") [ —0.0409 —0.0227}

= VGO~ | —0.0227  0.0477
Py, ~ B(—5.1508)[1 + 5.1508 x (—0.0409)] F = 1.4599 x 10~ (4.23)

ﬁSORM == 5.1285. (4.24)
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Table 12
Results of FORM and SORM for Example 3 and Example 4
Probability distributions Reliability index
F, z FORM SORM
RBF based MLP based FORM RBF based MLP based SORM®
FORM* FORM" Method 2°¢ SORM? SORM"
Normal Normal 4.2409 4.2614 4.261 4.2456 4.2471 4.246
Lognormal Normal 5.1508 5.1511 5.151 5.1285 5.1283 5.139
Normal Lognormal 4.2659 4.2660 4.266 4.2560 4.2543 4.259
Lognormal Lognormal 5.2133 5.2126 5.213 5.2105 5.2011 5.211

% RBF method 2 with Multiquadrics was used in RBF based FORM.
® MLP refers to multilayer perceptron artificial neural networks. The results come from Deng et al. (2005).
¢ The results come from Haldar and Mahadevan (2000).

Comparing Eqgs. (4.20), (4.22) and (4.24), it can be concluded that RBF network method 1 based SORM
and RBF network method 3 based SORM are both right and accurate enough. The differences between
them come from the different parameters of the RBF networks.

4.5. Discussions

To illustrate the applicability of the RBF based FORM and SORM, different distributions of F), and Z
are considered in the calculation of the safety indices of the same beam problem as described in the above
two sub-sections. Multiquadrics is used in RBF method 2. The results of RBF method 2 based FORM and
SORM are listed in Table 12. For comparison, the results of Deng et al. (2005) and Haldar and Mahadevan
(2000) are also listed. Again, no significant differences are observed. It is shown that the RBF based FORM
or SORM can be used to calculate the probability of failure and the safety index. In our examples, simple
problems with only two random variables are presented in the explicit performance functions. The perfor-
mance functions are barely nonlinear. The simple examples are used for illustration and for comparison.

In the proposed RBF based approaches, unlike the response surface method, it is not necessary to know
the underlying relationship or to suppose a relationship between the input variables and the output. The
RBF is a universal approximator and can be used to approximate linear or non-linear, implicit or explicit
performance functions. Therefore, the RBF based MCS, FORM or SORM can cope with problems whose
performance functions are linear or non-linear, implicit or explicit in terms of multi-variable. The RBF
based MCS, FORM or SORM are especially useful for reliability problems with implicit and nonlinear per-
formance functions where other reliability methods are not applicable. Minor extra manual work is needed
with the increase of random variable number since the key task is to establish an RBF model.

The computation CPU time and evaluation numbers of limit state (or performance) function are studied
in detail in Gomes and Awruch (2004) about RBF network’s approximation capability, and the following
conclusions have been made: “For examples with large structural systems with implicit limit state function
(LSF) and high computational cost, techniques such as Monte-Carlo Simulation may be a feasible alternative
if the LSF may be approximated using ANN” (RBF). Emphases in this paper were placed on the proposed
methodology. RBF networks are used to approximate and replace the performance functions or their par-
tial derivatives. Thus the number of direct calls to the performance function was reduced. In the evaluation
of RBF network, only simple mathematics and little CPU time are needed to obtain the outcome. Compu-
tation of derivatives is intrinsically to extract information from the established and successfully trained
RBF network, so no extra evaluation numbers of performance function and computation CPU time are
needed. Consequently, the conclusions of Gomes and Awruch (2004) and Hussain et al. (2002) on RBF
networks are also feasible in this work.



J. Deng | International Journal of Solids and Structures 43 (2006) 3255-3291 3287
5. Conclusions

The main contribution of this paper is to propose three RBF network methods to compute the (implicit
and often complex) performance function derivatives and then to combine them with conventional MCS,
FORM and SORM and propose three RBF reliability analysis methods: RBF based MCS, RBF based
FORM and RBF based SORM. The presented methodology is also convenient for problems with explicit
but highly non-linear performance functions or for problems with a large number of basic random num-
bers. Such problems may be difficult to solve by conventional approximation methods and simulations be-
cause of either prohibitive computational cost or loss of accuracy. RBF network is applied in these methods
to simultaneously estimate the implicit performance function and its first or second order partial deriva-
tives. Reliability analysis is performed on the RBF network instead of the real performance function.
The approach is conceptually elegant. Illustrative examples, although simple, do show that the RBF based
MCS, FORM, or SORM are feasible for reliability analysis. The focus of this paper were placed on the
proposed RBF based methodology and algorithms. For more details on other RBF network issues, such
as training sets selection, hidden neurons numbers, the training algorithm, and potential limitations of
RBF, etc. refer to references (Haykin, 1999; Li, 1996; Warnes et al., 1998).

The RBF based MCS differentiates itself from other MCS methods in that it employs the robust gener-
ality capability of RBF to compute the values of implicit performance function, which combines the advan-
tages of conventional MCS and RBF technique. It can thus prohibitively reduce the computation time. This
approach is applicable to structural reliability problems with a wide arrange of variations including the
number of random variables, the random variable distributions and the performance function. The RBF
based FORM differentiates itself from other FORMs in that it employs an RBF to compute the values
and gradients of implicit performance function. The RBF based SORM differentiates itself from other
SORMs since it employs an RBF to compute the values, the first and second order partial derivatives of
implicit performance function. The RBF based FORM or SORM are especially useful for reliability prob-
lems with implicit and nonlinear performance functions.
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Appendix A
In Section 2.2.3, the integral calculus [(x* 4+ a)In(b + vx* + ¢) dx is calculated as
1
/(szra)ln (bJr \/x2+c>dx:§ /ln (bJr \/x2+c)dx3 +a/ln (bJr \/x2+c)dx
|
=3 In (b+ VvV x? +c)x3 +aln (b+ Vx? +c)x
1
-3 /x3d(ln(b TVt c)) - a/xd(ln(b VT c)) (A.1)
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Suppose
_ / 2 d(In(b+ /% 1)) (A2)
2= /xd(ln(b + VX2 + c)) (A.3)

In order to calculate the integral calculus (A.2), let
x = +/csht (A4)

where sh7 = €=, cht = == and v/x2 + ¢ = \/ccht.
(1) Calculatlon of I1

Il:/x d(in(b+ v+ e)) = / (Vesh)™ e one — (ve) / sho” 4,

—1

b+ +/ccht 7=+ cht
s [ [(che)* = 1] 3/(cht) —2(chs)* +1
= —_— = A-S
e [ G = o Do (A5)
This expression can be expressed as
he)* —2(ch?)’ + 1 E

(ch?) y (cht)” + = A(ch)’ + B(cht)’ + F(cht) + D+ 5——— (A.6)

7z +cht 7z +cht

where
b b b b b
/(cht)3dt = /[(sht)2 + 1]dshr = g(sht) + sht (A.8)
/(ch 1)dr = é(e” —e 4+ 4) (A.9)
/(cht) dt = sht (A.10)
1 2\/c b+ \/cexp(t)

—dr = t A1l
e =

Then the integral 11 of Eq. (A.5) can be obtained by placing Eq. (A.7) into Eq. (A.6) and by using Egs.
(A.8)—(A.11). Note

t= arsh(%) =In (%—F x;+ 1) (A.12)

The integral I1 can be expressed in terms of variable x.



J. Deng | International Journal of Solids and Structures 43 (2006) 3255-3291 3289

(2) Calculation of 12
Similarly, the integral I2 can be obtained as follows:

IZ—/xd(ln(b+\/x2+c))—/\/EShtd\/Echz—(\/E)/Mdt

b+ y/ccht 7=+ cht
_ [(cho)? = 1> (ch#)* —2(chs)* + 1
_(\/E)/ L+ cht dt_(‘/g)/ £y chr dr (A.13)

Then the integral 12 of Eq. (A.13) can be obtained by placing Eq. (A.7) into Eq. (A.6) and by using Eqgs.
(A.8)—(A.11). Note Eq. (A.12), 12 can be expressed in terms of x.

After calculation Il and 12, the integral calculus [(x* + a)In(b + v/x*> + ¢)dx can be obtained by using
Eq. (A.1).
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